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Abstract
Introduction: Categorization is a fundamental cognitive process, whereby the brain 
assigns meaning to sensory stimuli. Previous studies have found category representa-
tions in prefrontal cortex and posterior parietal cortex (PPC). However, these higher- 
order areas lack the fine- scale spatial representations of early sensory areas, and it 
remains unclear what mechanisms enable flexible categorization based on fine- scale 
features.
Methods:	In	this	study,	we	decoded	functional	MRI	signals	and	measured	causal	influ-
ences, across visual, parietal, and prefrontal cortex from participants performing cat-
egorization based on coarse-  or fine- scale spatial information in thirteen healthy 
adults.
Results: We show that category information based on coarse discriminations was rep-
resented	 in	 the	PPC,	 in	 the	 intraparietal	 sulcus	 region,	 IPS1/2,	 at	 an	early	 stage	of	
categorization trials, whereas representations of category information based on fine- 
scale	 discriminations	 formed	 later	 during	 interactions	 between	 IPS1/2	 and	primary	
visual cortex (V1). Specifically, when fine- scale discriminations were necessary, we 
decoded significant category information from V1 at an intermediate stage of trials 
and	again	from	IPS1/2	at	a	late	stage.	IPS1/2	feedback	was	critical,	because	categori-
zation	performance	improved	as	causal	influence	from	IPS1/2	to	V1	increased.	Further,	
these	mechanisms	were	plastic,	as	the	selectivity	of	IPS1/2	and	V1	responses	shifted	
markedly with retraining to categorize the same stimuli into two new groups.
Conclusions:	Our	 findings	 suggest	 that	 reentrant	processing	between	 the	PPC	and	
visual cortex enables flexible abstraction of category information.
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1  | INTRODUCTION

Our	 ability	 to	 categorize	 information	 based	 on	 common	 aspects	
or structure in varied sensory experiences is essential for se-
lecting appropriate behavioral responses (Seger & Miller, 2010). 
Representations of category information have been shown in 
higher- order cognitive areas such as the lateral prefrontal cortex 
(PFC) (Ferrera, Yanike, & Cassanello, 2009; Freedman, Riesenhuber, 
Poggio, & Miller, 2001; Li, Mayhew, & Kourtzi, 2009) and poste-
rior parietal cortex (PPC) (Freedman & Assad, 2006; Swaminathan 
&	Freedman,	2012).	In	delayed	match-	to-	category	tasks,	neurons	in	
macaque PFC and PPC often show category- selective signals after 
sample stimulus onset and throughout the delay period and test 
stimulus presentation (Freedman & Assad, 2006; Freedman et al., 
2001).	It	has	been	reported	that	the	PPC	has	stronger,	earlier,	and	
more reliable category- related signals than the PFC (Swaminathan & 
Freedman, 2012), which suggests that category representations can 
be generated in the PPC.

Because	 category-	defining	 information	 may	 contain,	 for	 in-
stance, high spatial frequency content requiring fine- scale visual 
representations, learning new categories may also depend on plas-
ticity in early sensory areas, which has been demonstrated in ex-
trastriate cortical areas (Aizenstein et al., 2000; Goncalves et al., 

2015). However, the respective roles of higher- order and early 
visual areas and their interactions during categorization remain 
unclear.	One	 possibility	 is	 that	 category	 signals	 are	 generated	 in	
higher- order areas, such as the PPC, owing to its involvement in 
both	sensory	 (Bisley,	Krishna,	&	Goldberg,	2004)	and	higher	cog-
nitive functions (Toth & Assad, 2002), whereas early visual cortex, 
such as the primary visual cortex (V1), strictly represents sen-
sory information on object features and locations that are neces-
sary for extracting category information at higher cortical levels. 
Alternatively, category signals may be detectable as early as V1 
when categorizations rely on fine- scale features, which would likely 
involve interactions with higher- order cortex like the PPC. Such a 
role for V1 beyond basic sensory processing has been shown in 
selective attention, working memory, subjective perception, and 
perceptual learning (Kamitani & Tong, 2005; Li, Piech, & Gilbert, 
2008; Roelfsema, Lamme, & Spekreijse, 1998; Super, Spekreijse, & 
Lamme, 2001; Yan et al., 2014).

To test for category signals in V1 and, if present, the large- scale 
network	dynamics	giving	rise	to	these	signals,	we	used	fMRI	and	
multivariate pattern analysis (MVPA) (Haxby et al., 2001) to moni-
tor	cortical	activity	in	the	PPC,	PFC,	lateral	occipital	cortex	(LOC),	
and V1 while participants performed a visuospatial categorization 
task.

F IGURE   1 Delayed visual–spatial 
categorization task and behavioral 
performance. (a) Circular visual stimuli 
appeared at one of eight possible 
locations equidistant from the fixation 
point. Participants grouped stimuli into 
two categories defined by an invisible 
category boundary (solid line). The 
dotted line is the boundary used when 
participants retrained to categorize stimuli 
into two new categories. The boundary 
lines are shown for illustration only. (b) A 
sample stimulus was presented for 0.5 s, 
and after a long delay period (11 s), a 
test stimulus was presented. Participants 
reported whether the sample and test 
stimuli belonged to the same category. 
(c) Participants’ performance accuracy 
(left) and average reaction time (RT; 
right) for the sample stimuli far (6.5 dva) 
from the category boundary and close 
(2.7 dva) to the boundary. Red and green 
lines, respectively, denote increase and 
decrease from 2.7 to 6.5 dva. Participants’ 
average RT was shorter for sample stimuli 
6.5 dva from the category boundary 
(compared with 2.7 dva)
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2  | MATERIALS AND METHODS

2.1 | Participants

Thirteen healthy adults (seven females; age: 20.70 ± 1.59 years) with 
normal	or	corrected-	to-	normal	vision	participated	in	the	fMRI	study.	
None of the participants had a history of neurological or psychiatric 
conditions.	Informed	consent	was	obtained	from	all	subjects	in	accord-
ance	with	guidelines,	and	the	protocol	was	approved	by	the	Institute	
of	Psychology,	Chinese	Academy	of	Sciences.	One	participant	was	ex-
cluded	from	the	fMRI	analysis	due	to	he	requested	to	terminate	the	
scanning session after the first scan.

2.2 | Experiment design

In	 order	 to	 assess	 the	 role	 of	 higher-	order	 and	 early	 visual	 areas	 in	
visuospatial categorization (Figure 1a), we adapted a categorization 
task previously used in macaque experiments (Crowe et al., 2013). We 
used a delayed visuospatial categorization (DVSC) task that requires 
participants to group eight circular stimuli according to learned catego-
rization rules (Figure 1a; category boundary in experiment 1: solid line; 
experiment 2, after retraining: dotted line). Trials began with the pres-
entation of a square gaze fixation point (each side 0.5 degrees of visual 
angle [dva]; duration 0.5 s) at the center of the display. Participants 
were instructed to acquire and maintain their gaze on the fixation point 
throughout the trial. After the initial fixation period, a circular sample 
stimulus (0.6 dva in diameter) was presented for 0.5 s at an eccentricity 
of 7 dva. This was followed by a long delay period (11 s), after which 
a circular test stimulus was presented (7 dva from the fixation point). 
The sample and test stimulus positions were selected pseudorandomly 
from eight possible positions equally spaced around the perimeter of 
an invisible circle centered at the fixation point. There was 5.4 dva be-
tween two adjacent positions). The category boundary in experiment 
1 and, after retraining, in experiment 2 was a diagonal line passing 
through the fixation point at an angle of 45 and 135°, respectively. The 
positions nearest the boundary were 2.7 dva away from the bound-
ary.	If	the	test	stimulus	belonged	to	the	same	category	as	the	sample,	
participants were instructed to press the “yes” button on the response 
device	as	quickly	as	possible	within	 the	2-	s	 test	duration.	 If	 the	 test	
stimulus belonged to the different category, participants pressed the 
“no” button (Figure 1b). The “yes” button was either on the left or 
right, which was counterbalanced across the participants. As control 
trials, a fixation cross instructed participants to simply gaze at the cross 
(14	s).	Before	scanning,	participants	practiced	to	ensure	they	would	be	
able to perform the task with greater than 85% accuracy. Participants 
completed 15 runs (30 trials per position, for a total of 240 trials, and 
240 fixation trials) in each experiment. There were four scans totally 
for	each	subject	(7,	8,	7,	8	runs,	respectively).In	particular,	experiment	
one and two consisted of two scanning sessions, respectively. Each 
experiment included 15 runs (a total of 30 runs). Each run was 448s. 
The sessions performed on separate days with 1 or 2 days separated. 
A high- resolution 3D anatomical T1- weighted scan was acquired from 
each participant in each scan session.

2.3 | Visual display

We generated visual displays on a DELL computer using the Matlab 
Psychophysics toolbox (Psychtoolbox- 3; www.psychtoolbox.org). A 
17 × 14 inch liquid crystal display projector outside the scanner room 
displayed the stimuli on a screen located at the end of the scanner 
bore. Participants viewed the visual stimuli back- projected onto the 
screen at a total length of 12 cm through a mirror attached to the 
head coil. The screen subtended 45 dva in the horizontal dimension 
and 37 dva in the vertical dimension.

2.4 | MRI acquisition

Scanning was performed at the Hospital of Anhui Medical University 
using a 3- T GE Discovery scanner. We used foam pads to stabilize the 
head of each participant and earplugs for ear protection. T1- weighted 
images for anatomical localization were acquired using a 3D spoil 
gradient- recalled sequence (repetition time [TR] = 7.872 ms; echo 
time	 [TE]	=	3.06	ms;	 inversion	 time	 [TI]	=	400	ms;	 flip	 angle	 =	 11°;	
voxel size = 0.8594 mm × 0.8594 mm × 1 mm; 192 sagittal slices; 
matrix size = 256 × 256). T2- weighted images sensitive to blood oxy-
genation level- dependent contrasts were acquired using a gradient 
echo- planar image pulse sequence (TR = 2,000 ms; TE = 22.6 ms; flip 
angle = 30°; voxel size = 3.4375 mm × 3.4375 mm × 3.7 mm; 37 axial 
slices; slice thickness = 3.7 mm; matrix size = 64 × 64).

2.5 | Data analysis

2.5.1 | fMRI data preprocessing

Functional	and	anatomical	images	were	first	analyzed	using	the	FMRI	
Expert Analysis Tool (part of the FSL package; http://www.fmrib.
ox.ac.uk/fsl). Preprocessing of functional images consisted of motion 
correction, run- wise linear (1st- order polynomial) detrending, spa-
tial smoothing (Gaussian kernel, full width at half maximum = 5 mm), 
and temporal filtering (a nonlinear high- pass filter with a 90- s cutoff). 
Functional images were first registered to the anatomical images and 
then	into	the	standard	(MNI)	space.	Registration	of	the	functional	im-
ages	with	high-	resolution	structural	images	and	standard	(MNI)	space	
was carried out using affine transformations (Jenkinson & Smith, 
2001).	 Registration	 from	 the	 anatomical	 images	 to	MNI	 space	was	
further	 refined	using	FNIRT	nonlinear	 registration	 (Andersson	et	al.,	
2007). We performed run- wise detrending because our data were de-
rived from 15 different runs (two scans), so an assumption of a con-
tinuous linear trend across all runs is not appropriate. Global scaling, 
which	was	used	in	a	previous	Granger	causality	analysis	for	fMRI	data	
(Wen, Yao, Liu, & Ding, 2012), was applied to remove the global signal.

2.5.2 | Regions of interest (ROIs)

All	ROIs	that	we	used	are	based	on	probabilistic	templates	(Mars	et	al.,	
2011; Sallet et al., 2013; Wang, Mruczek, Arcaro, & Kastner, 2015; 
Zhen et al., 2015). Previous studies have shown that the cortical 

http://www.psychtoolbox.org
http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl


4 of 15  |     LI et aL.

anatomy of V1 is a reliable predictor of the location and retinotopic 
organization	of	V1	(Benson	et	al.,	2012).	In	addition,	our	recent	study	
revealed that early visual areas were better aligned across subjects 

within the standard space relative to the higher- order areas (Wang 
et al., 2015). Thus, we defined V1 (and occipital areas, V2 and V3, 
as	well	as	ventral	occipitotemporal	areas,	V4,	VOC,	and	PHC)	on	the	

TABLE  1 Regions of interest. To obtain regions in the left parietal and dorsal frontal cortex, we flipped the corresponding regions in the 
right hemisphere across the midline, since the atlases from which our regions were derived only focused on the right hemisphere

ID Lobe Region Abbreviation MNI (L/R) Reference

1 Posterior occipital Primary visual cortex V1 (−6,	−92,	−2)/(9,	−90,	2) Wang et al. (2015)

2 Posterior occipital Secondary visual cortex V2 d:	(−10,	−99,	12)/(14,	−96,	
15) 
v:	(−9,	−83,	−11)/(10,	−81,	
−8)

3 Posterior occipital Third visual complex V3 d:	(−18,	−97,	16)/(24,	−94,	
16) 
v:	(−17,	−79,	−12)/(18,	−77,	
−11)

4 Ventral temporal hV4 (−25,	−80,	−14)/(26,	−79,	
−12)

5 Ventral temporal Ventral occipital cluster VOC (−25,	−66,	−10)/(26,	−64,	
−9)

6 Ventral temporal Parahippocampal cortex PHC (−27,	−52,	−9)/(28,	−49,	−9)

7 Lateral occipital–temporal Lateral occipital complex LOC (−47,	−71,	−2)/(48,	−68,	−3) Zhen et al. (2015)

8 Superior parietal Ventral intraparietal area SPLA (−30,	−41,	53)/(30,	−41,	53) Mars et al. (2011)

9 Superior parietal Anterior superior parietal cortex SPLB (−12,	−50,	63)/(12,	−50,	63)

10 Superior parietal Anterior part of the medial wall 
of the intraparietal sulcus

SPLC (−28,	−55,	55)/(28,	−55,	55)

11 Superior parietal Posterior intraparietal sulcus 
(IPS3)

SPLD (−19,	−63,	53)/(19,	−63,	53)

12 Superior parietal Posterior intraparietal sulcus 
(IPS1,	IPS2)

PPC/SPLE (−21,	−78,	43)/(21,	−78,	43)

13 Inferior	parietal Parietal opercular region IPLA (−49,	−25,	30)/(49,	−25,	30)

14 Inferior	parietal Anterior supramarginal gyrus IPLB (−53,	−32,	44)/(53,	−32,	44)

15 Inferior	parietal Posterior supramarginal gyrus IPLC (−50,	−44,	43)/(50,	−44,	43)

16 Inferior	parietal Anterior angular gyrus IPLD (−46,	−55,	45)/(46,	−55,	45)

17 Inferior	parietal Posterior angular gyrus IPLE (−37,	−67,	39)/(37,	−67,	39)

18 Dorsomedial frontal Supplementary motor area SMA (−10,	4,	59)/(10,	4,	59) Sallet et al. (2013)

19 Dorsomedial frontal Presupplementary motor area preSMA (−14,	23,	52)/(14,	23,	52)

20 Dorsomedial frontal Prefrontal area 9 Area9 (−10,	50,	29)/(10,	50,	29)

21 Dorsomedial frontal Frontal polar area 10 Area10 (−16,	58,	4)/(16,	58,	4)

22 Dorsolateral frontal Dorsolateral prefrontal cortex PFC/
Area9/46d/v

23 Dorsolateral frontal Middle frontal gyrus Area46 (−31,	48,	11)/(31,	48,	11)

24 Dorsolateral frontal Posterior middle frontal gyrus Area8A (−30,	9,	52)/(30,	9,	52)

25 Dorsolateral frontal Anterior dorsal premotor area antPMd (−24,	3,	55)/(24,	3,	55)

26 Dorsolateral frontal Lateral superior frontal gyrus Area8B (−22,	32,	39)/(22,	32,	39)

27 Striatum Limbic target (−15,	11,	−7)/(15,	12,	−7) Tziortzi et al. 
(2014)28 Striatum Executive target (−18,	10,	5)/(19,	10,	5)

29 Striatum Rostral motor target (−25,	0,	9)/(27,	0,	8)

30 Striatum Caudal motor target (−27,	−5,	6)/(28,	−5,	7)

31 Striatum Parietal target (−29,	−11,	1)/(30,	−9,	2)

MNI	(L/R),	The	Montreal	Neurological	Institute	(MNI)	coordinates	of	the	centroids	of	the	left/right	region;	d,	dorsal;	v,	ventral.
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basis of the maximum probability map of visual topography derived 
from	a	 large	subject	population	 (Wang	et	al.,	2015)	and	LOC	based	
on the maximum probability map for object- selective regions defined 
by the contrast between objects and scrambled objects (Zhen et al., 
2015). We defined parietal, frontal, and striatum areas on the basis 
of probabilistic templates of anatomical connectivity and functional 
interactions (Mars et al., 2011; Sallet et al., 2013; Tziortzi et al., 2014) 
(Table 1). Note that the PFC, specifically, the dorsolateral PFC, was 
defined	as	the	combination	(logical	“or”)	of	dorsal	and	ventral	BA9/46	
(Mars	et	al.,	2011;	Sallet	et	al.,	2013;	Tziortzi	et	al.,	2014).In	particular,	
V1	included	1,592	voxels,	LOC	included	10,213	voxels,	PPC	included	
598 voxels, and PFC included 3,838 voxels in the standard space.

2.5.3 | Multivariate pattern analysis

We used pyMVPA for classification analyses (Hanke et al., 2009). We 
first	wrapped	the	ROIs	in	standard	space	into	the	individual’s	space.	
All MVPAs were performed on an individual’s space. The multivoxel 
activity patterns for each stimulus position were analyzed by means 
of a linear support vector machine (SVM) in combination with a re-
cursive feature elimination (RFE) procedure (De Martino et al., 2008) 
to estimate the most discriminative voxels. C parameter used in SVM 
was	 set	 −1,	which	 provides	 automatic	 scaling	 of	 the	 value	 accord-
ing to the norm of the data. We first divided preprocessed functional 
data into “trials” and labeled them according to stimulus position 
(here eight positions treated as conditions, 30 trials per position, a 
total of 240 trials). For all eight positions, correct trials were divided 
into a training set and a test set using a leave- one- run- out method, 
which resulted in 15 different splits. The training set (14 runs) was 
used for deriving maximally informative patterns with the iterative 
algorithm, and the test set (one run) was only used to assess the 
performance of classification. The feature selection algorithm (RFE) 
procedure was performed without an F test; especially, we used a 
RFE to identify those voxels that contributed most strongly to the 
discrimination	of	positions.	In	the	first	iteration,	SVM	classifiers	were	
trained	and	 tested	 including	all	 cortical	voxels	 included	 in	 the	ROIs	
defined on the basis of the probabilistic atlases (Sallet et al., 2013; 
Wang et al., 2015) in a “leave- one- out” cross- validation procedure. 
Classification accuracy was calculated and 20% of the voxels with the 
lowest average absolute weights were removed from the feature set. 
Using only the surviving voxels in the next iteration, new classifiers 
were again trained and tested until a stopping criterion. The itera-
tion was stopped when performance did not increase in the next 10 
iterations. The RFE was performed separately for each time point. 
Final accuracies at each voxel were computed as the mean over all 
splits for the test set only. Then, we computed Spearman’s correlation 
between multivoxel activity patterns for different positions in final 
saved voxels during RFE, that is, similarity values, on the full dataset, 
with	values	ranging	from	−1	to	1.	In	order	to	find	the	true	type	I	error	
rate, nonparametric Monte Carlo simulations were used to determine 
the significance of the performances of individual participants; espe-
cially, we configured to shuffle the stimuli labels, but only once and 
only for samples that were labeled as being part of the training set 

in a particular cross- validation fold. This is used to perform a cross- 
validation analysis under the H0 hypotheses. Next, we assigned the 
null distribution estimator. The statistical significance threshold was 
set at p < .05. For group level, we used binomial tests to test whether 
the	prediction	accuracies	of	the	ROIs	were	significantly	better	than	
chance-	level	performance.	Importantly,	we	used	several	parameters	
and different feature selection procedures (the RFE procedure or a 
certain	number	of	the	most	active	voxels	in	ROIs),	and	we	obtained	
similar results in each case.

2.5.4 | Granger causality analysis

After performing RFE with cross- validation, the number of voxels 
most contributing to categorization differed between individuals. 
To	maintain	consistent	ROIs	across	subjects,	we	generated	ROIs	for	
Granger causality analyses with spheres of 4 mm radius centered at 
the voxels with the most sensitivity during the decoding analysis in the 
individual subject’s space. Granger causality analysis was performed 
in	MATLAB	 using	 the	 Granger	 causality	 GUI	 toolbox	 (http://www.
dcs.warwick.ac.uk/~feng/causality.html).	 Briefly,	 we	 estimated	 the	
Granger causality for a pair of brain regions during the categorization 
and fixation trials after removing the first two time points (4- s) per 
trial, in order to eliminate the effect of transients. Next, we calculated 
the average Granger causality across runs (Luo et al., 2013).

2.5.5 | Linking Granger causality with behavior

We assessed behavioral performance in each run using reaction 
time (RT), as RT is sensitive to the stimulus distance from the cat-
egory boundary (Figure 1c). For each participant, we ranked 15 runs 
according to RT and sorted them into 11 groups in ascending order, 
with each group consisting of five neighboring runs. A standardized 
Granger causality measure was calculated from the “raw” Granger 
causality values during categorization (GCc) and fixation (GCf) using 
the	following	formula:	(GCc	−	GCf)/(GCc	+	GCf).	Next,	the	standard-
ized Granger causality and behavioral performance in each group were 
averaged across runs and across participants. The average standard-
ized	Granger	causality	between	the	IPS1/2	and	V1	for	each	group	was	
plotted as a function of the mean RT z- score for the group, and the 
relationship between these two variables was assessed by Spearman’s 
rank correlation.

3  | RESULTS

3.1 | Behavioral performance in the delayed 
visuospatial categorization task

We presented stimuli either 2.7 or 6.5 dva from the category bound-
ary (Figure 1a). Participants categorized sample stimuli that were 
2.7 dva (mean 89.5% correct, standard deviation [SD] 4.5%) or 6.5 dva 
(mean 90.0% correct, SD 4.9%) from the category boundary with 
about 90% accuracy. There was no difference in the accuracy of 
participants for sample stimuli at these different distances from the 
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category boundary (t = 0.496, p = .628), but there was a significant dif-
ference in RT (t = 2.230, p = .044; Figure 1c).

3.2 | Stimulus location decoding in higher- order and 
early visual areas

Visuospatial categorization requires representations of stimulus 
locations and category information. Using MVPA, we first investi-
gated the representation of stimulus locations at various stages of 
visual	processing,	that	is,	in	the	PFC,	IPS1/2,	LOC,	and	V1.	Although	
the resolution of spatial representations varies from coarse to fine 
scales across visual cortex, previous studies have shown that MVPA 
methods can successfully recover even fine- scale features from 
cortical	activity	sampled	at	coarser	resolutions	using	fMRI	(Harrison	
& Tong, 2009).

For all classifications, ensemble activities pooled over the 6-  to 
10- s time points during the delay period (using the recursive algo-
rithm) significantly predicted stimulus locations (all p- values <.002), 
with a prediction accuracy reaching 29%, 24%, 20%, and 17% in V1, 
LOC,	 IPS1/2,	 and	 PFC,	 respectively	 (Figure	2a),	where	 chance-	level	
performance	 is	 12.5%.	There	was	 reliable	 performance	 in	V1,	 LOC,	
and	IPS1/2	across	participants	(p < .05, binomial test), but not in PFC 
(p = .146).

Next, we measured the dynamics of stimulus location representa-
tions in the higher- order and early visual areas by performing the de-
coding	analysis	on	individual	fMRI	time	points	(Figure	2b).	Classification	
accuracy in V1 increased above chance and reached its peak within 
6- s (t = 7.56, p = 1.12 × 10−5) relative to stimulus onset, and remained 
significantly elevated until 12 s (all p-values <.00625, corrected for 
multiple	comparisons).	In	comparison,	the	classification	accuracies	of	
stimulus	location	in	the	LOC,	IPS1/2,	and	PFC	were	lower	than	in	V1	
(LOC:	t = 4.97, p = 4.24 × 10−4;	IPS1/2:	t = 5.84, p = 1.13 × 10−4; PFC: 
t = 6.81, p = 2.91 × 10−5), but nonetheless rose above chance level 
within	6-	s	of	 stimulus	onset	 (LOC:	 t = 5.26, p = 2.70 × 10−4;	 IPS1/2:	
t = 3.87, p = 2.62 × 10−3; PFC: t = 4.07, p = 1.85 × 10−3) and reached 

a peak at 8- s. Classification accuracy remained above chance until 
10	s	in	LOC	and	IPS1/2,	and	until	8-	s	in	PFC,	respectively	(all	p- values 
<.00625). There was no significant bias in classification accuracies (all 
p- values >.1) for any stimulus position, in any brain area.

Finally, we computed the similarity between multivoxel activity 
patterns elicited by stimuli presented 5.4, 9.9, and 12.9 dva apart. We 
included stimuli within the same category and in different categories, 
to eliminate category influence (Figure 3a). There was significant spa-
tial	information	based	on	pattern	similarity	in	V1,	LOC,	and	IPS1/2	(all	
p-values <.05), but not for the PFC (Figure 3b–e). The higher pattern 
similarity values in V1 for stimuli 5.4 dva apart (compared with 9.9 and 
12.9 dva apart) presumably reflect the small receptive field size of V1 
neurons.

3.3 | Category coding in higher- order and early 
visual areas

The above decoding results indicate that both higher- order and early 
visual areas are involved in the representation of stimulus locations. 
If	V1,	LOC,	IPS1/2,	and	PFC	activity	can	also	represent	learned	cat-
egories, then the similarity between multivoxel activity patterns elic-
ited by stimuli within the same category should be greater than that 
elicited by stimuli in different categories. To test this premise, we 
first computed six parameters: three parameters for within- category 
similarities (WCS) and three parameters for between- category simi-
larities	(BCS).	These	WCS	and	BCS	parameters	represent	angles	be-
tween stimuli of 5.4, 9.9, or 12.9 dva, and each parameter reflects 
the average of the similarity values calculated for each pair of stimuli 
at that particular angle of stimulus separation (Figure 4a). For exam-
ple,	we	calculated	the	5.4	dva	BCS	parameter	by	averaging	similari-
ties between pairs of stimulus positions that were 5.4 dva apart and 
crossed the category boundary, and we calculated the 5.4 dva WCS 
parameter by averaging similarities between pairs of stimulus posi-
tions that were 5.4 dva apart and crossed a line perpendicular to 
the category boundary. We then generated three category indices 

F IGURE  2 Decoding stimulus location in higher- order and sensory cortical areas. (a) The classification accuracy of the location of sample 
stimuli	during	the	delay	period	(6–10	s)	for	V1,	lateral	occipital	cortex	(LOC),	IPS1/2,	and	prefrontal	cortex	(PFC).	(b)	Time-	resolved	decoding	
of	individual	fMRI	time	points	for	V1	(red	circles),	LOC	(turquoise	squares),	IPS1/2	(green	triangles),	and	PFC	(magenta	inverted	triangles).	Note	
that stimulus location was successfully decoded from both higher- order and sensory cortex during the delay period. Error bars indicate standard 
error of the mean, *p < .05
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measuring	the	difference	between	WCS	and	BCS	parameters	at	5.4,	
9.9,	and	12.9	dva	stimulus	separation	(i.e.,	BCS	was	subtracted	from	
WCS), respectively. Positive category index values indicate more sim-
ilar multivoxel activity patterns for stimuli within the same category, 
whereas negative values indicate more similar activity patterns for 
stimuli in different categories. We found category- related signals in 
V1 as well as higher- order visual areas. Mean category indices were 
significantly	 above	 zero	 in	 IPS1/2	 at	 the	 6-		 to	 8-	s	 time	 points	 for	
stimuli 12.9 dva apart and again later, at the 12-  to 14- s time points, 
for	stimuli	5.4	dva	apart.	In	comparison,	V1	only	showed	significant	
positive category indices at the 10-  to 14- s time points for stimuli 
5.4 dva apart (all p-values <.05, Figure 4b). This suggests that cat-
egory	 signals	 based	on	 coarse	 discriminations	 first	 arise	 in	 IPS1/2,	
whereas significant category signals based on fine discriminations 
first arise in V1.

In	 this	 experiment,	we	defined	 a	 particular	 category	boundary	
to divide stimuli, but it would have been possible to define different 
boundaries to divide stimuli. To control for nonspecific effects, we 
determined which of the four possible category boundaries (which 
exhaustibly divide the eight stimulus positions into two equal 
groups) results in the greatest difference between average pattern 
similarities (i.e., greatest category indices) for the four positions on 
each side of the boundary, for each participant. Notably, for the 
majority of participants, the actual category boundary was optimal 
(i.e., it yielded the greatest category indices), and not the other three 
“irrelevant”	 boundaries,	 in	 IPS1/2	 at	 the	6-		 to	8-	s	 time	points	 for	
stimuli 12.9 dva apart, and in V1 at the 10- s time point for stimuli 
5.4	dva	apart	(IPS1/2,	6-	s:	n = 9 of 12, p = 3.92 × 10−4;	IPS1/2,	8-	s:	
n = 8 of 12, p = 2.78 × 10−3; V1, 10 s: n = 7 of 12, p = .014, binomial 
test; Figure 6a and b). Although mean category indices for the actual 
category	boundary	were	significantly	above	zero	in	the	LOC	at	the	

F IGURE  3 Similarity between 
multivoxel activity patterns for stimuli 
separated by different distances in V1, 
lateral	occipital	cortex	(LOC),	IPS1/2,	and	
PFC. (a) Summary of the analysis scheme 
for pairs of stimuli 5.4, 9.9, and 12.9 dva 
apart. For example, we computed the 
5.4 dva condition across the eight pairs of 
stimulus positions that were 5.4 dva apart. 
(b–e) Representation of stimulus positions 
at time points greatly above chance 
decoding performance is shown. V1 and 
IPS1/2	encoded	spatial	information,	and	
their contribution varied as time elapsed, 
whereas	LOC	encoded	spatial	information	
similarly throughout the delay period
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8-  to 10- s time points, and in the PFC at the 8- s time point, for stim-
uli 5.4 dva apart, the actual category boundary was not optimal (i.e., 
it	did	not	yield	the	greatest	category	indices)	in	LOC	and	PFC	across	
subjects when compared with the “irrelevant” boundaries, that is, 
category-	selective	signals	could	not	be	decoded	from	LOC	and	PFC	
in	our	DVSC	task.	This	control	analysis	confirms	that	IPS1/2	and	V1	
contained learned category signals.

In	order	to	further	verify	that	category	processing	based	on	coarse	
spatial	discriminations	occurred	in	IPS1/2	at	the	early	stage	of	trials,	we	
compared the average similarity of multivoxel activity patterns for stim-
uli 14 dva apart near the category boundary to the pattern similarity 
for stimuli 14 dva apart but far from the boundary, at the 6- s time point 
when	IPS1/2	signals	had	contributed	most	to	categorization	performance	
(Figure 5a). Greater pattern similarity was found for stimuli near the cat-
egory boundary (t = 4.17, p = 1.58 × 10−3, paired t test), indicating that 
IPS1/2	signals	did	not	readily	distinguish	categories	early	in	trials	when	
stimuli appeared near the boundary (Figure 5b). Additional support for this 
conclusion	was	derived	from	the	following	comparisons	of	IPS1/2	mea-
sures:	(i)	WCS	for	stimuli	5.4	dva	apart,	and	BCS	for	stimuli	5.4	dva	apart,	
all	near	the	boundary;	and	(ii)	BCS	for	stimuli	14	dva	apart	near	the	bound-
ary,	and	either	WCS	or	BCS	for	stimuli	5.4	dva	apart	near	the	boundary.	
None of these comparisons were significantly different (all p-values >.1). 
Taken	together,	our	results	demonstrate	that	IPS1/2	signals	mainly	coded	
category information based on coarse visuospatial discriminations at the 
early stage of trials, whereas V1 signals coded category information based 
on fine- scale discriminations at an intermediate/late stage of trials.

3.4 | Controlling for retinotopy

To address a possible contribution of retinotopy to our proposed 
categorical effects in primary visual cortex, we subdivided V1 to 

exploit the known retinotopy and then measured the relation-
ship between retinotopic and categorical representations (while 
holding stimulus positions constant but changing their category 
membership).	 That	 is,	 we	 constructed	 a	 two-	way	 ANOVA	model	
to test whether retinotopic position and category membership 
interact with each other in left dorsal V1 (lV1d), left ventral V1 
(lV1v), right dorsal V1 (rV1d), and right ventral V1 (rV1v), respec-
tively. An interaction here means that the activity in a particular 
subdivision of V1 depends on the category to which the stimulus 
belongs. Specifically, we separated data from the different stimulus 
positions into two groups based on category membership in exper-
iments 1 and 2. Group 1 includes positions in the upper left (posi-
tions 1 vs 2) and lower right (positions 5 vs 6) visual field quadrants, 
which belonged to the same category in experiment 1 but different 
category in experiment 2 (Figure 3a). Group 2 includes positions 
in the upper right (positions 3 vs 4) and lower left (positions 7 vs 
8) visual field quadrants, which belonged to the same category in 
experiment 2 but different category in experiment 1. We averaged 
similarities between pairs of stimulus positions that were 5.4 dva 
in the two groups, respectively. To minimize the possible effects 
of individual subject variations, we used the same areas based on 
the maximum possibility atlas for each participant. There were sig-
nificant or marginally significant interactions between stimulus po-
sition and category at 8-  to 14- s time points (8 s: lV1v, p = .069; 
10 s: rV1d, p = .058; 12 s: lV1d, p = .026, rV1d, p = .009, rV1v, 
p = .014; 14 s: lV1v, p = .045, rV1d, p = .053, rV1v, p = .008; no sig-
nificant interaction at 6 s [all p-values >.25]). Post hoc tests (t tests,  
p- values <.05) showed that group 1 is more similar in experiment 
1 when its stimuli belonged to the same category, whereas group 
2 is more similar in experiment 2 when its stimuli belonged to the 
same category (Figure 6). These results suggest that V1 responses 

F IGURE  4 Category coding for higher- order and sensory areas. (a) Summary of the analysis scheme for stimuli within and between 
categories. For example, we computed the 5.4 dva category index value by measuring the difference between the within- category similarities 
(WCS)	for	the	pairs	of	stimuli	5.4	dva	apart,	farthest	from	the	category	boundary,	and	the	between-	category	similarities	(BCS)	for	the	pairs	
of	stimuli	5.4	dva	apart,	on	either	side	of	the	category	boundary	(BCS	subtracted	from	WCS).	(b)	Coding	of	category	information	in	V1	and	
IPS1/2	for	coarse	and	fine	discriminations.	The	IPS1/2	showed	early	category	tuning	for	the	12.9	dva	condition	and	late	category	tuning	for	the	
5.4 dva condition. V1 category tuning for the 5.4 dva condition started at an intermediate stage of the delay period. Arrowheads show onset of 
significant category signals
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F IGURE  5 Coarse	category	coding	in	IPS1/2	and	control	for	possible	attention	effects.	(a)	Summary	of	the	analysis	scheme	to	test	
categorization	and	spatial	attention.	(b)	IPS1/2	showed	greater	pattern	similarity	for	the	pairs	of	stimuli	that	were	14	dva	apart	and	near	the	
boundary	(vs	both	stimuli	far	from	the	boundary),	suggesting	that	early	in	trials,	IPS1/2	signals	did	not	readily	distinguish	categories	when	stimuli	
were near the boundary. (c) Greater pattern similarity for pairs of stimuli located at different distances from the boundary (with one stimulus 
near	the	boundary),	suggesting	that	IPS1/2	responses	better	reflected	category	processing	than	spatial	attention	in	our	task
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F IGURE  6 Multivoxel activity patterns in V1 subdivisions depend on stimulus category not just retinotopic location. There were significant 
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in our task (at least in part) reflected category processing and not 
just retinotopic organization.

3.5 | Controlling for attention

Previous	studies	have	shown	that	IPS1/2	plays	a	central	role	in	spatial	
attention	(Bisley	&	Goldberg,	2010;	Petersen	&	Posner,	2012).	In	the	
current study, more similar pattern was found between stimuli along 
a	category	line	than	those	away	from	a	category	line.	One	may	argue	
that	IPS1/2	effects	only	represent	visual	spatial	attention,	given	that	
attention is a spotlight along a decision line (shaped as a spotlight 
line). Previous studies revealed that “spotlight” of attention covered 
a larger section that may be as big further away from the decision line 
(Muller & Kleinschmidt, 2004). Even if spatial attention existed at the 
boundary in the current research, it may strongly modulate activity 
elicited by the stimulus close to the boundary, rather than the stimu-
lus far away, thereby differentiating their activity patterns. Thus, if 
IPS1/2	effects	were	due	to	selective	attention,	 then	one	might	ex-
pect greater pattern similarities for stimuli located at the same dis-
tance from the category boundary, compared to stimuli located at 
different distances from the boundary. Thus, we compared the av-
erage multivoxel activity pattern similarities for two sample stimuli 
when one stimulus was near the category boundary (Figure 5a, “dif-
ferent distance”) to the pattern similarities for two stimuli when both 
were far from the boundary (with stimuli in different categories for 
all comparisons; Figure 5a, “same distance”). We found that stimuli 
located at different distances to the category boundary had more 
similar activity patterns than stimuli at the same distance from the 
boundary,	 at	 the	 6-	s	 time	 point	 after	 stimulus	 onset	when	 IPS1/2	
signals contributed most to categorization performance (t = 2.56, 
p = .027; Figure 5c). We obtained a similar result when we retrained 
subjects	to	use	a	new	category	boundary.	This	suggests	that	IPS1/2	
responses better reflected category processing than spatial attention 
in our task.

3.6 | Signal transmission between IPS1/2 and V1

In	order	 to	determine	how	neural	 signals	 that	encode	visual–spatial	
categories	were	transmitted	between	IPS1/2	and	V1,	we	used	Granger	
causality because of the data- driven nature of this method, and the 
fact	 that	 this	method	has	been	successfully	applied	 to	 fMRI	data	 in	
investigations of effective connectivity (Hamilton, Chen, Thomason, 
Schwartz, & Gotlib, 2011; Wen et al., 2012). We found a significantly 
greater	causal	influence	from	IPS1/2	to	V1	for	categorizations	in	gen-
eral	compared	with	the	reverse	direction	from	V1	to	IPS1/2	(t = 4.14, 
p = 1.64 × 10−3; Figure 8a), showing that category processing involves 
top-	down	feedback	from	IPS1/2	to	V1.

Because	the	MVPA	showed	V1	signals	carried	category	informa-
tion during fine- scale discriminations, we compared the Granger cau-
sality for trials in which the sample stimulus was near the boundary 
(requiring fine discriminations) to trials in which the sample stimulus 
was far from the boundary (requiring coarse discriminations). We 
found	that	V1	had	a	significantly	greater	causal	 influence	on	IPS1/2	

when categorization required fine discriminations relative to coarse 
discriminations (p = .037, Figure 8c). This suggests that there are bi-
directional	interactions	between	IPS1/2	and	V1	when	categorization	
relies on fine discriminations.

To	 show	 that	 interactions	between	 IPS1/2	 and	V1	 relate	 to	 the	
behavioral performance of participants, we first divided task runs into 
groups based on RT (see Materials and Methods) and then calculated 
the	 Granger	 causal	 influence	 between	 IPS1/2	 and	V1	 for	 each	 RT	
group.	If	IPS1/2	feedback	to	V1	improves	categorization,	then	greater	
Granger	 causality	 from	 IPS1/2	 to	V1	 should	 correlate	with	 shorter	
RTs	in	the	DVSC	task.	Indeed,	we	found	a	strong	negative	correlation	
between	 the	 causal	 influence	 from	 IPS1/2	 to	V1	 and	 RT	 (r	=	−.57,	
p = .03; Figure 8b). This means that the stronger the causal influence 
from	IPS1/2	to	V1,	the	better	the	behavioral	performance.	There	was	
no significant correlation between the causal influence from V1 to 
IPS1/2	 and	 behavioral	 performance	 (r	=	−.10,	 p = .77). Considered 
alongside the MVPA results, this supports the proposal that coarse 
category	processing	occurs	first	in	IPS1/2	and,	with	IPS1/2	feedback,	
category representations emerge later in V1 when fine discriminations 
are necessary.

3.7 | Learning- based plasticity in IPS1/2 and V1

In	order	to	show	that	the	aforesaid	categorization	mechanisms	are	
flexible, and to further validate that the multivoxel activity pat-
terns	 in	 IPS1/2	 and	 V1	 were	 due	 to	 the	 learned	 categorization	
rule, we retrained participants recruited in experiment 1 to group 
the same stimuli into new categories defined by a boundary per-
pendicular to the original boundary (Figure 1b, dotted line). After 
retraining,	 IPS1/2	 and	 V1	 selectivity	 shifted	 dramatically	 away	
from the previous category boundary, to now reflect the new cat-
egory information. Consistent with the results from experiment 1 
(Figure 7a and b), the multivoxel activity patterns of the partici-
pants in experiment 2 were best classified according to the new 
category	boundary,	 and	not	 the	old	boundary,	 in	 IPS1/2	and	V1	
(IPS1/2,	similarities	for	stimuli	12.9	dva	apart,	at	6-	s:	n = 6 of 12, 
p = .054; V1, similarities for stimuli 5.4 dva apart, at 10 s: n = 6 
of 12, p = .054; binomial test; Figure 6c and d). Additionally, in 
experiment 2 with the new category boundary, there was signifi-
cantly	greater	top-	down	Granger	causal	influence	from	IPS1/2	to	
V1 for categorizations in general (compared with influence from 
V1	 to	 IPS1/2;	 t = 3.74, p = 3.26 × 10−3; Figure 8c), and stronger 
influence	 from	 IPS1/2	 to	V1	was	associated	with	better	catego-
rization performance (faster RTs; r	=	−.66,	 p = .01; Figure 8d). 
Together, these results indicate a profound learning- based plas-
ticity	of	category	representations	in	IPS1/2	and	V1,	in	which	early	
IPS1/2	 signals	 contained	 coarse	 category	 information,	 whereas	
later V1 signals contained category information pertaining to 
finer- scale discriminations. The strong correlation between the 
top-	down	 IPS1/2	 to	V1	 influence	 and	 behavioral	 results	 further	
suggests	 that	 the	 IPS1/2	and	V1	abstract	experience-	dependent	
category	representations	cooperatively,	reaffirming	our	fMRI	de-
coding results.
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3.8 | Decoding activity patterns in other brain areas

After	identifying	IPS1/2	and	V1	category	representations	in	the	above	
analyses, we repeated the same MVPA procedure for 27 other regions 
of interest, including two areas in the occipital cortex, three areas in 
the ventral occipital–temporal cortex, nine areas in the parietal cortex, 
eight areas in the dorsal frontal cortex, and five regions in the stria-
tum, in order to test whether other regions may carry category infor-
mation. None of these areas showed reliable category signals during 
either coarse or fine discriminations.

4  | DISCUSSION

Our	 results	 indicate	 that	 IPS1/2	and	V1	are	 important	 for	encod-
ing category information during the delay period of the delayed 
match- to- category task. These areas played distinct roles in catego-
rization:	IPS1/2	contained	category	information	at	an	early	stage	of	
the delay period during coarse discriminations and at a late stage 
when fine discriminations were necessary, whereas V1 contained 
category information at an intermediate stage during fine discrimi-
nations.	When	category	signals	emerged	in	the	IPS1/2,	the	IPS1/2	

provided	feedback	to	V1:	The	stronger	the	 influence	from	IPS1/2	
to V1, the better the categorization performance. Moreover, the 
IPS1/2	 and	 V1	 category	 representations	 reorganized	 when	 par-
ticipants learned new categories. These findings demonstrate the 
learning- based plasticity of visuospatial category representations in 
human	IPS1/2	and	V1	as	well	as	the	flexibility	of	IPS1/2-	V1	inter-
actions, which enable the abstraction of new category information 
from multiple spatial scales.

Previous studies in macaques have shown category- selective ac-
tivity of neurons in the PPC, particularly in the lateral intraparietal area 
(LIP)	(Freedman	&	Assad,	2006;	Swaminathan	&	Freedman,	2012).	LIP	
neurons were first shown to respond to categories defined by motion 
direction,	and	more	recent	work	suggests	 that	LIP	neurons	can	rep-
resent learned associations between a broad range of visual stimuli 
(Fitzgerald,	Freedman,	&	Assad,	2011).	Macaque	LIP	exhibits	a	number	
of	response	characteristics	similar	to	the	human	IPS1/2	region	(Konen	
&	 Kastner,	 2008;	 Szczepanski,	 Konen,	 &	 Kastner,	 2010).	Our	 study	
shows	that	IPS1/2	also	represents	category	information	like	LIP,	and	
goes beyond previous work by showing category information can be 
decoded as early as V1.

Although the classical view of V1 is as a purely sensory area, re-
cent	 fMRI	 results	have	 revealed	 that	 contextual	 information	as	well	
as internal states can influence V1 responses (Muckli, 2010). Available 
evidence suggests that V1 contributes to selective attention, working 
memory, subjective perception, and perceptual learning (Kamitani & 
Tong, 2005; Li et al., 2008; Roelfsema et al., 1998; Super et al., 2001; 
Yan et al., 2014). A recent study suggests that perceptual learning may 
occur on a conceptual level, similar to object category learning (Wang 
et	al.,	2016).	Because	these,	and	other,	cognitive	and	perceptual	op-
erations often require processing of fine- scale information, it may be 
necessary to draw upon the high- resolution visual map in V1.

When learning new categories, interactions between early sensory 
and higher- order cortical areas would allow the integration of informa-
tion from multiple visual maps at different spatial scales, to build sta-
ble category representations. Consistent with this, learned category 
information has been shown at multiple cortical levels, including the 
PFC (Ferrera et al., 2009; Freedman et al., 2001; Li et al., 2009), PPC 
(Braunlich,	 Gomez-	Lavin,	 &	 Seger,	 2015;	 Freedman	&	Assad,	 2006;	
Sarma, Masse, Wang, & Freedman, 2016; Swaminathan & Freedman, 
2012), extrastriate visual cortex, where activity in V3 and V3A changed 
with perceptual category learning (Aizenstein et al., 2000; Goncalves 
et al., 2015) and now V1 in our study. Feedback signals have been 
demonstrated	 between	 each	 of	 these	 cortical	 levels	 (Buschman	
&	 Miller,	 2007;	 Chen	 et	al.,	 2014;	 Moldakarimov,	 Bazhenov,	 &	
Sejnowski, 2014; Piech, Li, Reeke, & Gilbert, 2013; Saalmann, Pigarev, 
& Vidyasagar, 2007), and computational modeling work suggests that 
ultimately the feedback can result in learning in V1, for instance, from 
plasticity in top- down inputs or top- down gating of lateral interactions 
in V1 (Chen et al., 2014; Moldakarimov et al., 2014; Piech et al., 2013).

How	do	the	interactions	between	IPS1/2	and	V1	give	rise	to	cat-
egory	 representations	 based	 on	 fine-	scale	 features?	One	 possibility	
consistent with our data is that the sample stimulus causes V1 neurons 
with receptive fields at the stimulus location to undergo short- term 

F IGURE  7  IPS1/2	and	V1	category	sensitivity	before	and	after	
retraining. (a and b) Polar plot of the decoded boundary for the 
12.9	dva	condition	at	the	six-	second	time	point	for	IPS1/2,	and	for	
the 5.4 dva condition at the 10- s time point for V1. Extension of gray 
sector from the center of the plot represents number of participants 
showing that particular decoded boundary value, before retraining.  
(c and d) Same format as in a and b, except that data now reflects the 
retraining of participants to use a category boundary perpendicular to 
the	original	one.	Note	that	IPS1/2	and	V1	activity	showed	a	learning-	
based shift in category sensitivity, but not other areas at any time 
point
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plasticity or to show persistent activity (as spiking or oscillatory activ-
ity),	that	is,	to	retain	a	memory	of	the	stimulus	location.	Because	PPC	
neurons	have	relatively	large	receptive	fields	(e.g.,	in	macaque	LIP,	10	
dva receptive fields are common), this may limit their ability to gen-
erate category- selective signals based on fine- scale information, ini-
tially giving rise to only weak category- selective activity. Nonetheless, 
these PPC neurons can provide some feedback on categories to V1, 
possibly via extrastriate cortex. The feedback signals would have their 
greatest effect on those V1 neurons that retained a memory of stim-
ulus location (because the stimulus had previously potentiated syn-
apses or depolarized neurons, bringing them closer to action potential 
threshold). Thus, these V1 neurons would show increased excitability, 
reflecting category- selectivity built on fine- scale information, which 
could be transmitted to PPC to refine its own category representation. 
Another possibility does not require V1 to maintain information on the 
location	of	 the	sample	stimulus.	 Instead,	high	spatial	 resolution	may	
still be achievable when there is partial overlap of the large receptive 
fields of multiple PPC neurons. Although any one of these PPC neu-
rons would be insufficient, their combined output may have sufficient 
resolution when read out in V1, leading to enhanced responses of a 

select	group	of	V1	neurons.	In	this	case,	V1	category	signals	would	be	
a direct result of PPC feedback.

Although a number of studies have demonstrated that the PFC 
can encode category information (Crowe et al., 2013; Freedman & 
Assad, 2006; Freedman et al., 2001; Li et al., 2009; Swaminathan & 
Freedman, 2012), we only found moderate category- related mod-
ulations of PFC multivoxel pattern activity, which did not survive 
the	control	 for	nonspecific	boundary	effects.	 In	 comparison,	 IPS1/2	
showed reliable and robust category signals during our DVSC task. 
One	explanation	 is	 that	 our	 task	was	 not	 sufficiently	 demanding	 to	
warrant significant engagement of the PFC. That said, our results are 
consistent with prior nonhuman primate work, in which stronger and 
more reliable category signals were found in the PPC relative to PFC 
(Swaminathan & Freedman, 2012).

In	addition	to	category	processing,	the	PPC	plays	a	role	in	selec-
tive	attention	(Bisley	&	Goldberg,	2010;	Petersen	&	Posner,	2012)	and	
movement	planning	(Buneo	&	Andersen,	2006;	Cui,	2014).	However,	
it is unlikely that spatial attention or motor intention confounded the 
category	 signals	 we	 reported	 in	 IPS1/2	 (Bisley	 &	 Goldberg,	 2010).	
First,	 our	 control	 analysis	 showed	 that	 IPS1/2	 activity	 in	 our	DVSC	

F IGURE  8  Interactions	between	IPS1/2	and	V1	and	their	correlation	with	categorization	performance.	(a–c)	Categorization	data	for	the	
original category boundary. (d–f) Categorization data for the new category boundary after retraining. (a) Granger causal influences between 
IPS1/2	and	V1	during	categorization	in	general,	for	the	original	boundary	condition.	(b)	We	grouped	task	runs	according	to	RT.	Population	
average	standardized	Granger	causality	for	each	group	plotted	against	standardized	mean	RT	for	each	group.	Stronger	influence	from	IPS1/2	to	
V1 was associated with better categorization performance (faster RT). Linear fits are shown, where r is Spearman’s correlation coefficient and p 
is	the	significance	level.	(c)	Granger	causal	influences	between	IPS1/2	and	V1	when	categorizing	stimuli	near	the	category	boundary	and	far	from	
the boundary. (d–f) Same format as (a–c), except data now reflect categorization using the new category boundary after retraining

0

0.05

0.1

0.15

0.2

0.25

IPS1/2 to V1 V1 to IPS1/2
0

0.05

0.1

0.15

0.2

0.25

(a)
G

ra
ng

er
 c

au
sa

lit
y

G
ra

ng
er

 c
au

sa
lit

y

IPS1/2 to V1 V1 to IPS1/2
−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

1.5

RT(z−score)
G

ra
ng

er
 c

au
sa

lit
y(

z−
sc

or
e)

−1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

RT(z−score)

G
ra

ng
er

 c
au

sa
lit

y(
z−

sc
or

e)
Faster

Faster

Lower

Lower

r=-0.57
p=0.03

r=-0.66
p=0.01

NB FB NB FB
0

0.1

0.2

G
ra

ng
er

 c
au

sa
lit

y

NB FB NB FB
0

0.02

0.04

0.06

0.08

0.1

G
ra

ng
er

 c
au

sa
lit

y

IPS1/2 to V1 V1 to IPS1/2

NB:near boundary
FB:far from boundary

*

*

*

(b) (c)

(d) (e) (f)



     |  13 of 15LI et aL.

task better reflected category processing than spatial attention to 
visual stimuli near the category boundary. Second, evidence from 
nonhuman primate studies suggests that PPC neurons can exhibit 
category signals even when stimuli are presented outside their recep-
tive field (Freedman & Assad, 2009). This suggests that PPC neurons 
can independently encode spatial and nonspatial information. Third, 
although there may be an anticipation that behavioral responses will 
either be “yes” or “no,” our results cannot be explained only by an in-
tention embedded within the motor planning system because there 
is an explicit dissociation of the categorization of the sample stimulus 
from the participant’s response (which can only be precisely planned 
after the test stimulus) in our task. Finally, all category effects in our 
study reflect a contrast between different stimuli, to exclude a com-
mon intention/anticipation effect.

It	is	noteworthy	that	the	paradigm	we	used	cannot	exclude	the	
possibility of attention priming effects, whereby seeing one location 
in one spatial location primed the activation of the other locations 
to	 some	 degree.	Additionally,	 although	 fMRI	 furnishes	 time-	series	
data with high spatial precision, two features are especially prob-
lematic:	 (i)	 poor	 time	 resolution;	 and	 (ii)	 BOLD	 responses	 reflect	
delayed neural activity due to a convolution with an HRF, and may 
have significant interregional variability. Thus, the current applica-
tions	of	Granger	causality	to	fMRI	should	be	treated	cautiously	and	
require carefully chosen experimental paradigms. Finally, previous 
visual working memory studies have been argued that activity in 
early visual area is likely a top- down priming signal generated in 
anticipation of the upcoming probe stimulus to facilitate the com-
parison between the remembered sample stimulus and the probe 
stimulus (Lui & Pasternak, 2011; Serences, 2016). That is, the loca-
tion of the sample stimulus and its surrounding locations belonging 
to the same spatial category could be activated when it was near the 
end of the delay period. Thus, increased WCS may be found in V1 
at	10s	relative	to	8s	and	in	IPS1/2	at	12	s	relative	to	10s	(fine	dis-
crimination	signal	found	in	V1	at	10s,	in	IPS1/2	at	12a).	However,	no	
significant differences were found in these analyses (both ps >.15). 
Another possible explanation is perhaps that there were top- down 
rehearsals in V1 to identify which category the remembered sam-
ple	stimulus	was	belonged	to.	Due	to	poor	time	resolution	of	fMRI,	
further studies, such as intracranial electroencephalography stud-
ies,	 are	 required	 to	 test	 these	 possibilities.	 In	 summary,	 our	 study	
suggests that category processing based on coarse discriminations 
occurs	 first	 in	 the	higher-	order	 cortical	 area,	 IPS1/2,	which	 is	 ide-
ally positioned to transform sensory information into more abstract 
representations.	Feedback	from	IPS1/2	then	enables	category	pro-
cessing based on fine discriminations in early visual areas, including 
V1, which is well suited for processing fine- scale features that often 
aid in categorization.
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